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Abstract—Calculation of the Coulomb potential in the 
molecular dynamics code ddcMD has been parallelized based 
on a hybrid MPI/OpenMP scheme. The explicit pair kernel of 
the particle-particle/particle-mesh algorithm is multi-threaded 
using OpenMP, while communication between multicore nodes 
is handled by MPI. We have designed a scalable data-
privatization scheduling algorithm based on mutually exclusive 
workload partitioning, which combines: 1) fine-grain dynamic 
load balancing based on a greedy approach; and 2) minimal 
memory-footprint data privatization via memory locality-
aware computation assignment. This algorithm reduces the 
memory requirement for thread-private data from O(NP) to 
O(N+P1/3N2/3)—amounting to 75% memory saving for 16 
threads, while maintaining the average thread-level load-
imbalance less than 5%. Strong-scaling speedup for the kernel 
is 14.43 with 16-way threading on a four quad-core AMD 
Opteron node. 

Keywords—Hybrid MPI/OpenMP Parallelization; Thread 
Scheduling; Memory Optimization; Load Balancing; Parallel 
Molecular Dynamics 

I. INTRODUCTION 
Molecular dynamics (MD) simulation is widely used to 

study material properties at the atomistic level. Large-scale 
MD simulations are beginning to address broad problems 
[1-6], but increasingly large computing power is needed to 
encompass even larger spatiotemporal scales. For example, 
Glosli et al. performed a massively parallel MD simulation 
involving 62 billion particles using the MD code ddcMD, 
which demonstrated excellent performance and scalability 
[7]. 

Due to shifting trends in computer architecture, 
improvements in computing power are now gained using 
multicore architectures instead of increased clock speed. 
Furthermore, the number of cores per chip is expected to 
continue to grow. As a consequence, the performance of 
traditional parallel applications which are solely based on 
the message passing interface (MPI), is expected to degrade 

substantially [8]. Hierarchical parallelization frameworks, 
which integrate several parallel methods to provide different 
levels of parallelism, have been proposed as a solution to 
this  scalability problem on multicore platforms [5, 9, 10]. 

Two-level parallelization based on a hybrid 
MPI/threading scheme is anticipated to replace traditional 
MPI-only parallel MD. However, efficiently integrating a 
multi-threading framework into an existing MPI-only code 
is difficult for several reasons: 1) the highly overlapped 
memory layout in typical MD codes incurs serious thread-
write contentions; 2) naïve threading algorithms for MD 
usually create significant overhead, thereby limiting the 
threading speedup for a large number of threads; and 3) 
dynamic nature of MD requires low-overhead dynamic load 
balancing for threads to maintain good performance [11]. 

To address these issues, we have designed a scalable 
data-privatization threading algorithm based on mutually 
exclusive workload partitioning, which combines: 1) fine-
grain dynamic load balancing based on a greedy approach; 
and 2) minimal memory-footprint data privatization via 
memory locality-aware computation assignment. We have 
implemented this algorithm in ddcMD and demonstrated 
that the hybrid MPI/threading scheme outperforms MPI-
only scheme in terms of the strong scaling of large-scale 
problems. 

This paper is organized as follows. Section II summarizes 
the hierarchy of parallel operations in ddcMD. Section III 
describes the methodology and theoretical analysis of the 
data-privatization scheduler that combines two optimization 
techniques: Greedy load balancing and memory locality-
aware work allocation. Section IV evaluates the 
performance of the hybrid parallelization algorithm against 
that of the traditional MPI-only parallel algorithm. 
Conclusions are drawn in section V. 

 



II. DOMAIN DECOMPOSITION MOLECULAR DYNAMICS 
Molecular dynamics simulation follows the phase-space 

trajectories of an N-particle system where the forces 
between particles are given by the gradient of a potential 
energy function φ(r1, r2, …, rN). Positions and velocities of 
all particles are updated at each MD step by numerically 
integrating coupled ordinary differential equations. The 
dominant computation of most MD simulations is the 
evaluation of the potential energy function and associated 
forces.  The computational intensity varies greatly (102 – 
106 floating point operations per particle) with the physical 
model.  
   One model of great physical importance is the interaction 
between a collection of point charges.  This interaction is a 
Coulomb field (1/r) which is long range and pair-wise, 
requiring O(N2) operations to evaluate. Simulations with 
potential evaluations requiring O(N2) operations per MD 
step are intractable for all but the smallest systems.  
However various methods exist to reduce the computational 
complexity.  A common approach used by methods such as 
particle-particle/particle-mesh [12], particle mesh Ewald 
[13] and fast Fourier Poisson [14], is to decompose the 
Coulomb potential into two parts: A short-range explicit 
pair part that converges quickly in real space and a long-
range part that converges quickly in reciprocal space. The 
computational split of work between the short-range and 
long-range part is controllable though a “screening 
parameter”, which we call α. With the appropriate choice of 
α, computational complexity for these methods can be 
reduced to O(NlogN).  

In this paper we explore parallelization of the short-
range part of the Coulomb potential using OpenMP 
threading.  The short-range part is a sum over pairs with the 
form: 

 

€ 

φ = qiq j
erfc αrij( )

riji< j
∑

,
 (1) 

where qi is the charge of particle i and rij is the separation 
between particles i and j.  Though this work is focused on 
this pair function, much of the work can be readily applied 
to other pair functions. In addition to this intranode 
parallelization, the ddcMD code is already parallelized 
across nodes using a particle-based domain decomposition 
implemented using MPI. Combining the existing MPI-based 
decomposition with the new intranode parallelization yields 
a hybrid MPI/OpenMP parallel code.  

A. Internode Operations 
In typical parallel MD codes the first level of parallelism 

is obtained by decomposing the simulation volume into 
domains each of which is assigned to a compute core (i.e., 
an MPI task). Because particles near domain boundaries 
interact with particles in nearby domains, internode 
communication is required to exchange remote particle data 

between domains.  The surface to volume ratio of the 
domains and the choice of potential sets the balance of 
communication to computation.  

The domain-decomposition strategy in ddcMD allows 
arbitrarily shaped domains that may even overlap spatially. 
Also, remote particle communication between nonadjacent 
domains is possible when the interaction length exceeds the 
domain size. A domain is defined only by the position of its 
center and the collection of particles that it “owns.” Particles 
are initially assigned to the closest domain center, creating a 
set of domains that approximates a Voronoi tessellation. 
The choice of the domain centers will control the shape of 
this tessellation and hence the surface to volume ratio for 
each domain. The commonly used rectilinear domain 
decomposition employed by many parallel codes is clearly 
not optimal from this perspective. The best surface to 
volume ratio in a homogeneous system is achieved if 
domain centers form a bcc, fcc, or hcp lattice, which are 
common high-density packing arrangements of atomic 
crystals. 

In addition to setting the communication cost, the 
domain decomposition can also control load imbalance. 
Because the domain centers in ddcMD are not required to 
form a lattice, simulations with a non-uniform spatial 
distribution of particles (e.g., voids or cracks) can be load 
balanced by an appropriate non-uniform arrangement of 
domain centers. The flexible domain strategy of ddcMD 
allows for the migration of the particles between domains by 
shifting the domain centers. As any change in their positions 
affects both load balance and the overall ratio of 
computation to communication, shifting domain centers is a 
convenient way to optimize the overall efficiency of the 
simulation. Given an appropriate metric (such as overall 
time spent in MPI barriers) the domains can be shifted “on-
the-fly” in order to maximize efficiency [15].  

B. Intranode Operations 
Once particles are assigned to domains and remote 

particles are communicated, the force calculation can begin. 
Figure 1 shows a schematic of the linked-list cell method 
used by ddcMD to compute pair interactions in O(N) time. 
In this method, each simulation domain is divided into small 
cubic cells, and a linked-list data structure is used to 
organize particle data (e.g., coordinates, velocities, type, and 
charge) in each cell. By traversing the linked list, one 
retrieves the information of all particles belonging to a cell, 
and thereby computes interparticle interactions. The 
dimension of the cells is determined by the cutoff length of 
the pair interaction, Rc. 

The linked-list traversal introduces a highly irregular 
memory-access pattern, resulting in performance 
degradation. To alleviate this problem, we reorder the 
particles within each node at the beginning of every MD 
step so that the particles within the same cell are arranged 
contiguously in memory when the computation kernel is 
called. In our computing environment the benefit of the 



regular memory access far outweighs the cost of particle 
ordering. 

 

 
Figure 1.  2D schematic of the linked-list cell method for a pair 
computation with the cell dimension Rc. Only forces exerted by particles 
within the cutoff radius (represented by a two-headed arrow) are computed 
for particle i. 

The computation within each node is described as 
follows. Let Lx, Ly, and Lz be the numbers of cells in the x, y, 
and z directions, respectively, and {Ck | 0 ≤ k < LxLyLz} be 
the set of cells within each domain. The computation within 
each node is divided into a collection of small chunks of 
work called a computation unit λ. A single computation unit 
λk corresponding to cell Ck is defined as a collection of pair-
wise computations (see Fig. 2): 
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λk = ri ,r j( ) ri ∈ Ck;r j ∈ nn
+ Ck( ){ } ,

 (2) 

where nn+(Ck) is a set of half the nearest-neighbor cells of 
Ck. Due to Newton’s third law, forces on a pair of particles 
are equal and opposite in direction. This allows us to halve 
the number of force evaluations and use nn+(Ck) instead of 
the full set of nearest-neighbor cells, nn(Ck). The pairs in all 
computation units are unique, and thus the computation 
units are mutually exclusive: 
 

  

€ 

λk =∅
0≤k<LxLyLz


.
 

(3) 

The set of all computation units on each node is denoted as 
Λ = {λk | 0 ≤ k < LxLyLz}. Hereafter, N denotes the number 
of particles in each node, and P is the number of threads in 
each node. Note that P is identical among all nodes. 

We parallelize the explicit pair force computation kernel 
of ddcMD at the thread level using OpenMP. Two major 
problems commonly associated with threading are: 1) race 
condition among threads; and 2) thread-level load imbalance 
[8]. The race condition occurs when multiple threads try to 
update the force of the same particle concurrently. Several 
techniques have been proposed to solve these problems: 

• Duplicated pair-force computation—simple and 
scalable, but doubles computation. Usually used in 
GPGPU threading [16, 17]. 

• Spatial decomposition coloring [18]—scalable 
without increasing computation, but can cause load 
imbalance. 

• Mutually exclusive dynamic scheduling [19]—robust 
and suited for dynamic load balancing, but can incur 
considerable overhead for context switching. 

• Data privatization—no penalty on computation, but 
with excessive O(NP) memory requirement and 
associated reduction operation cost. 

 

 
Figure 2.  2D schematic of a single computation unit λk. The shaded cells 
Cj pointed by the arrows constitute the half neighbor cells, nn+(Ck). 

We have designed an algorithm that combines a mutually 
exclusive scheduler with a reduced memory data-
privatization scheme to address all of these issues.  In 
section III, we describe a traditional data-privatization 
algorithm and its problems, followed by a discussion of our 
solutions to these problems in subsections III-A and III-B.  

 

III. DATA-PRIVATIZATION SCHEDULING ALGORITHM 
A traditional data-privatization algorithm avoids write 

conflicts by replicating the entire write-shared data structure 
and allocating a private copy to each thread (Fig. 3). The 
memory requirement for this redundant allocation scales as 
O(NP). Each thread computes forces for each of its 
computation units and stores the force values in its private 
array instead of the global array. This allows each thread to 
compute forces independently without a critical section. 
After the force computation for each MD step is completed, 
the private force arrays are reduced to obtain the global 
forces. The reduction operation can be performed in 
O(NlogP) time using a hypercube algorithm. Note that read 
conflicts do not cause any problem in this context. 

 



 
Figure 3.  Schematic of a memory layout for a traditional data 
privatization. 

To reduce the redundant memory requirement, we have 
developed a low-overhead approach that provides excellent 
load balancing while imposing minimal interference on the 
worker threads. Our algorithm utilizes a greedy scheduler to 
distribute the workload before entering the pair 
computation, i.e., parallel section. In this approach, the 
scheduling cannot interfere with the worker threads since 
the scheduling is already completed before the worker 
threads are started. Because the schedule is recomputed 
every MD step (or perhaps every few MD steps) there is 
adequate flexibility to adapt load balancing to the changing 
dynamics of the simulation.  

The hybrid MPI/OpenMP parallelization of ddcMD is 
implemented by introducing the thread scheduler into the 
MPI-only ddcMD. Figure 4 shows the workflow of the 
hybrid MPI/OpenMP code using the data-privatization 
scheduler. The program repeats the following computational 
phases: First, the master thread performs initialization and 
internode communications using MPI; the scheduler 
computes the scheduled workload for each thread; and the 
worker threads execute the workloads in an OpenMP 
parallel section. 

Since the scheduling is performed frequently, the load-
balancing algorithm needs to be simple yet provide 
sufficient load-balancing capability. Therefore, we have 
adopted a greedy approach for the load-balancing scheduler, 
which is discussed and analyzed in subsection III-A. In 
subsection III-B, the load-balancing scheduler is further 
enhanced by introducing the minimal memory-footprint 
data-privatization scheme.  

 

 
Figure 4.  Schematic workflow of the hybrid MPI/OpenMP scheme. In 
each MD step, internode MPI communications and thread scheduling are 
performed by the master thread prior to the force computations, which are 
computed by worker threads in an OpenMP parallel section. 

A. Thread-Level Load-Balancing Algorithm Based on a 
Greedy Algorithm  
We implement thread-level load balancing based on a 

simple greedy approach, i.e., iteratively assign a 
computation unit to the least-loaded thread, until all 
computation units are assigned. 

Let Ti ⊆ Λ denote a mutually exclusive subset of 
computation units assigned to the i-th thread, where 
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Ti =∅
0≤i<P


.
 (4) 

The computation time spent on λk is denoted as τ(λk). Thus, 
the computation time of each thread is 
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τ Ti( ) = τ λk( )
λk∈ Ti

∑
.
 (5) 

The algorithm initializes Ti to be empty, and loops over λk in 
Λ. Each iteration selects the least-loaded thread Tmin = 
argmin(τ(Ti)), and assigns λk to it. Figure 5 shows the 
pseudo code of this algorithm. 
 
Algorithm Greedy Load Balancing 
1. for 0 ≤ i < P do 
2.  

€ 

Ti ←∅  
3. end do 
4. for each λk in Λ do 
5.  

€ 

Tmin ← argmin
0≤i<P

τ Ti( )( )  

6.  

€ 

Tmin ← Tmin ∪λk  
7. end do 

Figure 5.  Greedy load-balancing algorithm. 



The greedy algorithm is simple yet provides an excellent 
load-balancing capability. As shown below, this approach 
has a well-defined upper bound on the load imbalance. For a 
perfectly load-balanced system, the computation time of 
every thread is equal to the average computation time, 
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τ average =
1
P

τ Ti( )
i=0

P−1

∑
.
 (6) 

To quantify the load imbalance, we define a load-imbalance 
factor γ as the difference between the runtime of the slowest 
thread and the average runtime,

 

 
 

€ 

γ =
max τ Ti( )( ) −τ average

τ average

=
max τ Ti( )( )
τ average

−1 .
 (7) 

By definition, γ = 0 when the loads are perfectly balanced. 
Considering 
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min τ Ti( )( ) ≤ τ average , (8) 

thus, 
 

€ 

max τ Ti( )( ) −τ average ≤ max τ Ti( )( ) −min τ Ti( )( ) . (9) 

Substituting Eq. (9) into Eq. (7) yields 
 

€ 

γ ≤
max τ Ti( )( ) −min τ Ti( )( )

τ average . (10) 

Eq. (10) shows that reducing the difference of the maximum 
and minimum workloads minimizes the load-imbalance 
factor. 

In our greedy algorithm, the workload of Tmin is 
increased by τ(λk) at each iteration. Therefore, the 
maximum workload that can be increased is max(τ(λk)). 
This procedure guarantees that the variance of the 
workloads among all threads is limited by 
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max τ Ti( )( ) −min τ Ti( )( ) ≤ max τ λk( )( ) . (11) 

Applying the transitive relation to inequalities Eq. (9) and 
Eq. (11), we obtain 
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max τ Ti( )( ) −τ average ≤ max τ λk( )( ) . (12) 

Substituting Eq. (12) in Eq. (7) provides an upper limit for 
the load-imbalance factor  

 

€ 

γ ≤
max τ λk( )( )
τ average . (13) 

Performance of this load-balance scheduling algorithm 
depends critically on the knowledge of time spent on each 

computation unit τ(λk). Since the runtime of the 
computation units are unknown to the scheduler prior to the 
actual computation, the scheduler has to accurately estimate 
the workload of each computation unit. Due to the gradual 
change of the particle positions between consecutive MD 
steps, τ(λk) remains highly correlated between the 
consecutive MD steps. Therefore, we use τ(λk) measured in 
the previous MD step as an estimator of τ(λk). For the first 
step as well as steps when the cell structure changes 
significantly (e.g., redistribution of the domain centers), the 
workload of cell τ(λk) is estimated by counting the number 
of pairs in λk, 

 

€ 

τ λk( ) ≈ n Ck( ) n C j( )
Cj∈ nn+ Ck( )
∑ , (14) 

where n(Ck) refer to the number of particles in cell Ck. 

B. Memory Locality-Aware Workload Distribution 
Algorithm 
As mentioned before, the memory requirement of the 

data-privatization algorithm is O(NP). However, since only 
a small subset of Λ is assigned to each thread it is not 
strictly necessary to allocate a complete copy of the force 
array on each thread. Therefore, we allocate only the 
necessary portion of the global force array corresponding to 
the computation units assigned to each thread as a private 
force array. This idea is embodied in a simple three-step 
algorithm (Fig. 6): First, the scheduler assigns computation 
units to threads and then determines which subset of the 
global data is required by each thread. Second, each thread 
allocates its private memory as determined by the scheduler. 
Finally, private force arrays from all threads are reduced 
into the global force array. 

 

 
Figure 6.  Memory layout and three-step algorithm for memory locality-
aware scheduling algorithm. 

To do this, we create a mapping table between the global 
force-array index of each particle and its thread-array index 
in a thread memory space. Fortunately, ddcMD sorts the 
particle data based on the cell they reside in, and thus only 
the mapping from the first global particle index of each cell 
to the first local particle index is required. The local 



ordering within each cell is identical in both the global and 
private arrays. 

It should be noted that assigning computation unit λk to 
thread Ti requires memory allocation more than the memory 
for the particles in Ck. Since each computation unit 
computes the pair forces of particles in cell Ck and half of its 
neighbor cells nn+(Ck) as shown in Fig. 2, the force data of 
particles in nn+(Ck) need to be allocated as well. In order to 
minimize the memory requirement of each thread, the 
computation units assigned to it must be spatially 
proximate, so that the union of their neighbor-cell sets has a 
minimal size. For this purpose, it is essential to minimize 
the surface-to-volume ratio of Ti. 

To maintain a small surface-to-volume ratio when 
assigning a new computation unit to each thread, we modify 
the greedy scheduling algorithm introduced in section III-A. 
The pseudo-code of this algorithm is given in Fig. 7. First, 
we randomly assign a single computation unit to each 
thread. Then, the iteration begins by selecting the least-
loaded thread Tmin.  From the surrounding volume of Tmin, 
we select the computation unit that has the minimum 
distance to the centroid of Tmin, and add it to Tmin. The 
algorithm repeats until all computation units are assigned. If 
all of the surrounding computation units of Tmin are already 
assigned, Tmin randomly chooses a new unassigned 
computation unit as a new cluster’s initial seed and continue 
to grow from that point. 
 
Algorithm Memory Locality-Aware Load-Balancing 
Scheduler  
1. 

€ 

i← 0  
2. while i < P do 
3.  repeat  
4.   

€ 

λrnd ← random Λ( )  
5.  until 

€ 

λrnd ∉ T j <i( )  
6.  

€ 

Ti ← λrnd  
7.  

€ 

i← i +1 
8. end do 
9. while 

  

€ 

Ti ≠ Λ
0≤i<P
 do  

10.  

€ 

Tmin ← argmin
0≤i<P

τ Ti( )( )  

11.  

€ 

j*← argmin
Cj∈nn Tmin( )

centroid Tmin( ) −C j( )  

12.  

€ 

Tmin ← Tmin ∪λ j*  
13. end do 

Figure 7.  Modified scheduling algorithm combining load balancing and 
memory locality-aware algorithms. 

Figure 8 shows a 2D example of memory locality-
aware and load-balanced data-privatization scheduling. 
Figure 8(a) shows non-uniform particle distribution. Here, 
we assume that the workload in each cell is proportional to 
the number of particles in the cell. Figure 8(b) illustrates the 
result of scheduling. Most computation units on the lower 

left corner are assigned to T1, while the rest are assigned to 
T2. The load-imbalance factor γ in this example is 0.0435. 
 The memory requirement of this algorithm can be 
analyzed as follows. The memory for each thread comes 
from two sources: 1) memory for the actually assigned 
computation units Mλ; and 2) memory for the surface cells 
neighboring the assigned computation units Ms. The amount 
of memory requirement for the first source is 
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Mλ =O N
P
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , (15) 

whereas that for the second source is 
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P
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⎝ 
⎜ 
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⎠ 
⎟ 
2/ 3⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ . (16) 

Hence, the memory requirement for one thread is 
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Mλ +M s =O N
P

+
N
P
⎛ 

⎝ 
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⎞ 

⎠ 
⎟ 
2/ 3⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ , (17) 

and the memory footprint of P threads on a node is 
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P Mλ +M s( ) =O P N
P

+ P N
P
⎛ 

⎝ 
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⎞ 

⎠ 
⎟ 
2/ 3⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
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=O N + P1/ 3N 2/ 3( )
. (18) 

Thus, the asymptotic memory requirement for each node is 
O(N+P1/3N2/3), which is much smaller than the O(NP) 
memory requirement of the traditional data-privatization 
algorithm. 

Although this algorithm reduces the memory footprint 
significantly, it poses a difficulty in utilizing the hypercube 
reduction. This difficulty arises from the fact that the partial 
private force arrays are not aligned with each other. 
Nevertheless, the cost of linear reduction is reduced to 
O(N+P1/3N2/3) as a consequence of the reduced memory 
footprint. In fact, for a given P, the computation time of the 
partial linear reduction could be less than that of the 
hypercube reduction when N is large such that O(P1/3N2/3) < 
O(NlogP). 

 
Figure 8.  2D illustration of memory locality-aware algorithm. (a) Spatial 
particle distribution where the normalized particle density is color-coded. 
(b) The corresponding computation-unit assignment to two threads 
originating at T1 and T2 cells. 



IV. PERFORMANCE EVALUATION 
In this section, we perform performance measurements 

and analysis for the algorithm described in the previous 
section. Section IV-A measures the load-imbalance factor of 
our memory locality-aware scheduling. Section IV-B 
measures the memory requirement reduction achieved by 
our approach and confirms the O(N+P1/3N2/3) memory 
requirement for each node. Section IV-C demonstrates that 
the scheduling cost can be reduced without affecting the 
quality of load balancing. Section IV-D compares the 
performance of the hybrid MPI/OpenMP scheme with that 
of the MPI-only scheme.  

A. Thread-Level Load Balancing  
We have performed a load-balancing test for the 

scheduling algorithm on a dual six-core AMD Opteron 2.3 
GHz with N = 8,192 (Fig. 9). The actual measurement of the 
load-imbalance factor γ is plotted along with its estimator 
introduced in section III-A and the theoretical bound given 
by Eq. (13) as a function of P. The results show that γestimated 
and γactual are close, and are below the theoretical bound. 
Also, γtheoretical, γestimated and γactual are increasing functions of 
P. This result indicates the severity of the load imbalance 
for a highly multi-threaded environment and highlights the 
importance of the fine-grain load balancing. 

We have also observed that the performance fluctuates 
slightly depending on the initial cell selection of the 
memory locality-aware algorithm. While the random initial 
cell selection tends to provide robust performance compared 
to deterministic selection, it is possible to use some 
optimization techniques (e.g., reinforcement learning) to 
dynamically optimize the initial cell selection at runtime. 
For more irregular applications, it is conceivable to combine 
the light-overhead thread-level load balancing in this paper 
with a high quality node-level load balancer such as a 
hypergraph-based approach [20]. 

 
Figure 9.  Load-imbalance factor γ as a function of P from theoretical 
bound, scheduler estimation, and actual measurement. 

B. Memory Footprint 
To test the memory efficiency of the proposed method, 

we perform a simulations on a four quad-core AMD 
Opteron 2.3 GHz machine with the fixed number of 
particles N = 8,192, 16,000, and 31,250. We measure the 
memory allocation size for 100 MD steps while varying the 
number of threads P from 1 to 16. Figure 10 shows the 
average memory allocation size of the force array as a 
function of the number of threads for the proposed 
algorithm compared to that of a traditional data-privatization 
algorithm. The results show that the memory requirement is 
reduced by 65%, 72%, and 75% for 16 threads for N = 
8,192, 16,000, and 31,250, respectively, compared with the 
traditional O(NP) memory requirement. In Fig. 10, the 
dashed curves show the reduction of memory requirement 
per thread,  
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m = aP−1 + bP−2/ 3

. (19) 

where the first term represents the memory scaling from 
actual assigned cells and the second term represents scaling 
from surface cells of each thread (Eq. 17). The regression 
curves fit the measurements well, indicating that the 
memory requirement is accurately modeled by 
O(N+P1/3N2/3) per node or O(N/P+(N/P)2/3) per thread. 

 
Figure 10.  Average memory consumption for the private force arrays using 
our memory-saving strategy compared to the conventional entire-allocation 
method. Numbers in the legend denote the number of particles N. 

We also measure the computation time spent for the 
reduction of the private force arrays to obtain the global 
force array. Figure 11 shows the reduction-operation time as 
a function of the number of threads P for N = 8,192, 16,000, 
and 31,250 particles. Here, dashed curves represent the 
regression, 

 

€ 

t = aP1/ 3 + b . (20) 

The curves fit well in all cases. This validates our analysis 
of the reduction-operation cost that it follows O(P1/3) 
scaling. 



 
Figure 11.  Average reduction-operation time of the memory locality-aware 
scheduling as a function of the number of threads. Numbers in the legend 
denote N. 

C. Scheduling Cost  
Though our scheduling algorithm has successfully 

reduced the memory footprint compared to the traditional 
data-privatization threading, one might be concerned with 
the cost of the schedule calculation at each MD step. To 
quantify the computational overhead of the scheduling 
algorithm, we have measured and analyzed the scheduling 
costs. Figure 12 shows the measured scheduling costs when 
the scheduling is performed every 1 and 15 steps for 
N=8,192 and 16,000 varying the number of threads P from 1 
to 12 on dual six-core AMD Opteron 2.3 GHz. The figure 
shows that the scheduling cost increases linearly from 0.8% 
for P = 1 to approximately 5% for P =12 when the 
scheduling is performed at every MD step. The longer 
scheduling interval of 15 MD steps shows a similar 
behavior but with approximately 15-fold smaller scheduling 
cost (less than 0.1 to 0.4%).  

 

 
Figure 12.  Computational overhead of our scheduling algorithm for N = 
8,192 and 16,000 when the scheduling is performed every 1 and 15 steps. 

 
We have found that skipping the scheduling for 15 MD 

steps does not degrade the quality of load balancing. In Fig. 
13, the load-imbalance factor γ is plotted as a function of P 
when the scheduling is performed every 1 and 15 steps for 
8,192-particle system. The result indicates that there is no 
significant variation between two different scheduling 
frequencies. This result can be explained by realizing that 
the particle trajectories change slowly over the course of 
simulation. Hence, the workload within each computation 
unit is stable for some period of time. It is therefore not 
necessary to execute the scheduling calculation at every MD 
step. This makes the cost of scheduling negligible.  
 

 
Figure 13.  Load-imbalance factor as a function of P for the scheduling 
period of 1 and 15 MD steps. 

D. Strong-Scaling Performance 
We have measured the performance of the combined 

memory locality-aware and load-balancing algorithms. 
Figure 14 shows the thread-level strong-scaling speedup up 
to 16 threads on a four quad-core AMD Opteron 2.3 GHz 
for N = 8,192. The algorithm achieves a speedup of 14.43 
on 16 threads, i.e., the strong-scaling multi-threading 
parallel efficiency is 0.90. As shown in section IV-B, the 
combined algorithm reduces the memory consumption on 
the force array up to 65% for N = 8,192, while still 
maintaining an excellent strong scalability.  
 



 
Figure 14.  Thread-level strong scalability of the parallel section on a four 
quad-core AMD Opteron 2.3 GHz. The problem size is fixed as N = 8,192 
particles. 

Next, we compare the strong-scaling performance of the 
hybrid MPI/OpenMP and MPI-only schemes for large-scale 
problems on BlueGene/P at the Lawrence Livermore 
National Laboratory. One BlueGene/P node consists of four 
PowerPC 450 850 MHz processors. The MPI-only 
implementation treats each core as a separate task, while the 
hybrid MPI/OpenMP implementation has one MPI task per 
node, which spawns four worker threads for the force 
computation. The test is performed on 512 BlueGene/P 
nodes, which is equivalent to 2,048 MPI tasks in the MPI-
only case and 512×4 threads for hybrid MPI/OpenMP. The 
problem size is fixed as 221,184 particles. 

The test result in Fig. 15 shows that the speed of the 
MPI-only implementation outperforms that of hybrid 
MPI/OpenMP on 128 cores by a factor of 1.39. This result 
is expected, since the performance of the MPI/OpenMP 
code is limited by Amdahl’s law. Namely, only the pair 
kernel is parallelized, while the rest of the program is 
sequential in the thread level. This disadvantage of the 
MPI/OpenMP code diminishes as the number of cores 
increases from 256, 512, to 1,024. Eventually, the hybrid 
MPI/OpenMP code performs better than the MPI-only code 
on 2,048 cores. The main factors underlying this result are: 
1) the surface-to-volume ratio of the MPI-only code is larger 
than that of the hybrid MPI/OpenMP code; and 2) the 
communication latency for each node of the MPI-only code 
is four times larger than that of the hybrid MPI/OpenMP 
code.  

 

 
Figure 15.  Total running time per MD step for a fixed problem size at N = 
221,184 particles. The benchmark is performed on 32 to 512 BlueGene/P 
nodes (4 cores/node). 

To verify this hypothesis, we have further performed a 
preliminary study on a massive strong-scaling comparison 
of hybrid MPI/OpenMP and MPI-only schemes. We 
increase the number of BlueGene/P nodes to 8,192 nodes 
(32,768 cores). Figure 16 shows the running time of 0.84-
million particle system for the total number of cores ranging 
from 1,024 to 32,768. The result indicates that the hybrid 
scheme performs better when the core count is larger than 
8,192. On the other hand, the MPI-only scheme gradually 
stops gaining benefit from the increased number of cores 
and become slower when using 32,768 cores. Note that the 
crossover point of the two schemes in terms of the 
granularity in Figs. 15 and 16 are similar at ~ 100 
particles/core. This result confirms the assertion that the 
MPI/OpenMP model (or similar hybrid schemes) will be 
required to achieve better strong-scaling performance on 
large-scale multicore architectures. 

 
Figure 16.  Total running time per MD steps for a fixed problem size at N = 
843,750 particles on 1,024 – 32,768 Power PC 450 850 MHz cores. 



V. CONCLUSIONS 
We have demonstrated that our memory locality-aware 

scheduling algorithm successfully overcomes the 
disadvantages of the traditional data-privatization threading 
with minimal overhead. The scheduling algorithm 
guarantees a bounded load-imbalance factor while reducing 
the memory requirement from O(NP) to O(N+P1/3N2/3). The 
cost of scheduling can be eliminated without the loss of 
load-balancing quality by reducing the scheduling 
frequency. Also, benchmarks of the massively parallel MD 
simulations suggest significant performance benefits of the 
hybrid MPI/OpenMP scheme for fine-grained large-scale 
strong-scaling applications.  
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